Class Stats


  • public class Stats
    extends java.lang.Object
    Simple NaN-aware statstical methods.
    • Method Summary

      All Methods Static Methods Concrete Methods 
      Modifier and Type Method Description
      static java.util.Map descriptiveStatistics​(java.lang.Object statsNames, java.lang.Object data)
      Return a map of descriptive stat name to statistic.
      static double kendallsCorrelation​(java.lang.Object lhs, java.lang.Object rhs)  
      static double kurtosis​(java.lang.Object data)  
      static double max​(java.lang.Object data)  
      static double mean​(java.lang.Object data)
      High quality parallelized mean using kahas compensation.
      static double median​(java.lang.Object data)  
      static double min​(java.lang.Object data)  
      static double pearsonsCorrelation​(java.lang.Object lhs, java.lang.Object rhs)  
      static tech.v3.datatype.Buffer percentiles​(java.lang.Object percentages, java.lang.Object data)
      Create a reader of percentile values, one for each percentage passed in.
      static tech.v3.datatype.Buffer quartiles​(java.lang.Object data)  
      static double skew​(java.lang.Object data)  
      static double spearmansCorrelation​(java.lang.Object lhs, java.lang.Object rhs)  
      static double stddev​(java.lang.Object data)  
      static double sum​(java.lang.Object data)
      High quality parallelized summation using kahas compensation.
      static double variance​(java.lang.Object data)  
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Method Detail

      • descriptiveStatistics

        public static java.util.Map descriptiveStatistics​(java.lang.Object statsNames,
                                                          java.lang.Object data)

        Return a map of descriptive stat name to statistic. Statistic names are described with keywords. All stats methods are NaN aware meaning nan's are removed before calculation.e

        Available stats:

         [:min :quartile-1 :sum :mean :mode :median :quartile-3 :max
          :variance :standard-deviation :skew :n-values :kurtosis} 
      • percentiles

        public static tech.v3.datatype.Buffer percentiles​(java.lang.Object percentages,
                                                          java.lang.Object data)
        Create a reader of percentile values, one for each percentage passed in.
      • quartiles

        public static tech.v3.datatype.Buffer quartiles​(java.lang.Object data)
        Returns:
        percentiles(vector(min, 25, 50, 75, max), item)
        .
      • min

        public static double min​(java.lang.Object data)
      • max

        public static double max​(java.lang.Object data)
      • sum

        public static double sum​(java.lang.Object data)
        High quality parallelized summation using kahas compensation.
      • mean

        public static double mean​(java.lang.Object data)
        High quality parallelized mean using kahas compensation.
      • median

        public static double median​(java.lang.Object data)
      • variance

        public static double variance​(java.lang.Object data)
      • stddev

        public static double stddev​(java.lang.Object data)
      • skew

        public static double skew​(java.lang.Object data)
      • kurtosis

        public static double kurtosis​(java.lang.Object data)
      • kendallsCorrelation

        public static double kendallsCorrelation​(java.lang.Object lhs,
                                                 java.lang.Object rhs)
      • spearmansCorrelation

        public static double spearmansCorrelation​(java.lang.Object lhs,
                                                  java.lang.Object rhs)
      • pearsonsCorrelation

        public static double pearsonsCorrelation​(java.lang.Object lhs,
                                                 java.lang.Object rhs)